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Mean-field theory for the Q-state Potts-glass neural network 
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Abstract A systematic study of the Q-state Potts model of neural nehwrb, extended 
to include biased pattem, is made for atensive loading a. Mean-field equations are 
mitten down withi the replica symmetric approximation, for general Q and arbimty 
temperature T. For the Q = 3 model and two daws of representative bias parameters, 
the storage capacity and retrieval qualily at zero temperature are discussed as functions 
of the bias, taking -into account the Mattis retrieval state and the lowest y”etric 
states. The T-Q diagram is obtained and the stability pmpenies of the retrieval state 
are analysed at h i t e  temperatures A wmparison is made with the biased Hopfield 
model. 

1. Introduction 

Neural networks with multi-state neurons based upon Potts spins have attracted 
recent interest. This type of models has been first introduced by Kanter [l], where 
the storage capacity and retrieval of information were discussed (for symmetric 
synaptic couplings and unbiased stored patterns), mostly concentrating on the zero 
temperature limit. Since then this model has been further studied and extended in 
several directions taking into account e.g. more realistic neurophysiological properties 
of neurons. For a finite number of patterns the temporal development of the overlap 
has been studied for asymmetric couplings, allowing non-zero correlations (=bias) 
between the patterns [2-4]. Also the stability of these networks at zero and finite 
temperatures has been extensively treated as a function of bias [SI. Later it has been 
shown that this type of models (the Potts perceptron) can be used successfully in 
multiclass classification problems [6,7] and in a statistical formulation of the Wdlshaw 
model with local inhibition [8]. Very recently local inhibition has also been applied 
in layered feedforward networks with multi-state elements leading to a Potts-glass 
version of these networks [9]. Furthermore an isotropic version of the model has 
been shown to be particularly suited for invariant pattern recognition [lo]. 

As for largely mathematical approaches, the parallel dynamics of a diluted version 
of the model has been solved exactly using a probabilistic approach [11,12]. A 
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rigorous lower bound for the storage capacity of Kanter’s Potts model has been 
derived in [13] and the almost sure convergence of the free energy and the overlap 
order parameter in the thermodynamic limit have been proved in [14] for a number 
of stored patterns growing logarithmically with the size of the system. A systematic 
study of the Q+tate Potts glass neural network with extensive loading of biased 
patterns is quite tedious and, to our knowledge, has not been performed so far. 
The purpose of the present paper is to provide such a study. Preliminary results on 
the thermodynamic properties of these networks, mostly concentrating on unbiased 
patterns, have been given in [15]. 

This paper is organized as follows. In section 2 we describe the model in detail. 
In section 3 we write the free energy and the definition of the order parameters in 
mean-field theory. Within the replica-symmetric approximation, we End the fixed- 
point equations at arbitrary temperatures for these order parameters. In the limit 
of zero temperature these equations can be reformulated into two coupled equations 
for the appropiate combinations of order parameters. We then discuss in detail in 
section 4 the solutions of these equations for the retrieval states and the lowest- 
order symmetric states of the Q = 3 model with two representative classes of bias 
parameters. In particular the critical storage capacity and the quality of retrieval 
are analysed and compared with the biased Hopfield model. Section 5 presents the 
mite temperature results for the retrieval states of the same models. A temperature- 
capacity diagram is given as a function of the bias parameters and the stability region 
for the retrieval states is obtained as a function of temperature, bias and storage 
capaciv. Our findings are compared with similar results for the biased Hopfield 
model. In section 6 the conclusions are presented. Finally, the fixed-point equations 
for the Q = 3 model at zero temperature are written out in detail in the appendix 

2. The model 

Consider a system of N neurons. Each neuron can be described by a Potts spin 
ui E {1,2,. . . , Q ] ,  i = 1,2,. . . , N .  The neurons are interconnected with all the 
others by a synaptic matrix of strength J$ which determines the contributions of 
a signal fired by the jth presynaptic neuron in state I to the postsynaptic potential 
which acts on the ith neuron in state IC. The energy potential hi,,; of a neuron i 
which is in a state ai is given by 

with the Pots spin operator U defined as 

We assume that the synaptic couplings are symmetric, i.e. .Jh‘ = Jj’F. The dynamics 
of the Q-state Potts model is defined as in 111. At zero temperature the state of the 
neuron in the next time step is fixed to be the state which minimizes the induced 
local field (1). The stable states of the system are those configurations {U; }  where 
every neuron is in a state which gives a minimum value to {hi,,*}. For symmetric 
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couplings this stability is equivalent to the requirement that the configurations {oi} 
are the local minima of the Potts Hamiltonian 

In the presence of noise there is a finite probability of having configurations other 
than the local minima. This can be taken into account by introducing an effective 
temperature T = 1/p. 

'RI build in the capacity for learning and memory in this network, its stationary 
configurations representing the retrieved patterns must be correlated with the stored 
patterns IF'}, CL = 1,2 . . . ,p fored by the learning process. The latter are allowed to 
be correlated, ie. the { C p )  are chosen as independent random mriables which can 
take the values 1,2 ..., Q with probability 

where { B k }  are the bias parameters. Since P(k) are probabilities, { B k }  satisfy the 
relations 

Q 
- 1 4  B,  6 Q - 1 Z B k  = 0. / (5) 

k=l  

As in [SI, we therefore propose the learning rule 

In what follows, we study this biased Potts network for finite loading CY = p / N ,  
p -+ 03, N -+ 03. At this point we remark that the a = 0 results for this model have 
been studied in [5], the Bk = 0, k = 1,2 . . . ,Q case for finite a has been discussed 
in [I] for a learning rule of the type (6) and in [lo] for the learning rule 

which stores only the information whether two neurons are in the same state or not. 

3. Replica-symmetric mean field theory 

The Hamiltonian (3) for the learning rule (6) can be rewritten as 
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where we have employed the identity 

Using standard techniques [1,16], one finds the following expression for the 
free energy density in the limit N + 03 and for s condensed patterns {ciy},v = 
1,2,. . . ,s: 

with h, the couplings of the external field terms and with ((.. .)) denoting the 
quenched average over the distribution of the condensed patterns {cy}. The order 
parameters mi,  qxp and v X p  have the following meaning 

where < . . . > stands for thermal average. Hence, mi describe the macroscopic 
overlap with the condensed patterns, q X p  are the extended Edwards-Anderson order 
parameters and the v X P  describe the overlap with the noncondensed patterns. We 
note that in contrast with the Hopfield model with biased patterns [17], the order 
parameters q X p  explicitly contain the bias. Consistently we get that for Q = 2, using 
u,;,,j - - upj  and B, = ma, where the U are now the Jsing spins 43, equation (12) 
reduces to 

such that in that case the multiplicative bias factor (1 - a2) can be taken out of the 
definition of qXp.  



Binsed B i t s  neural network 553 

Assuming the replica symmetty, ie. 

x m, = m y  

Q x p  = G r ip = f for X = p 

where the diagonal values of q x p  and rx4 have to be introduced as separate order 
parameters since they are functions of mi (m contrast with the biased Hopfield model 
[17J and with the anisotropic Potts model [l]), in the limit n -+ 0 the free energy 
density (10) becomes 

q x p = q  r x p = r  f o r A # p  A,p=1,2 ,..., n (15) 

with the Gaussian measure Dz given by 

Q 

k=l  
Dz = d z k ( 2 x ) - 1 ~ z e u p ( - z ~ / 2 ) .  

Furthermore 'MO(<, z )  reads 

Z,(€,%)= :orP(f-r)(l+ B,)(Q-l-B,)+~(uE. , , ,  -B,)(m,+h,) 
s 

"=I 

From (16)-(18) we get the fixed-point equations for the order parameters 

We note that in general two of the order parameters, i.e. r and f are algebraic. 
firthermore for zero bias, = Q - 1. 
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In the limit of zero temperature the fuced-point equations (19)-(23) can be 
rewritten in the following way. 'clking for simplicity s = 1, ie. onIy one condensed 
pattern, we first rewrite 

P(4- Q) = c 
P ( F - T ) = c ( l - c ) - '  

with 

and X ( 5 , z )  given by (18). At this point we note that the order parameters m and + and hence T and F can also be Written in a form where the Pdependence is only 
located in the function 2. 

In the b i t  p -+ M the sign of ( X p  - 'Hc) E AP,  determines the important fact 
whether (Z,)-' is 0 or 1. Consequently the system can be described by the solutions 
of 

(30) 

'Ib get a contribution from the 0 function in (28)-(30) we need to satisfy Q - 1 
conditionsA,,(E,z) < O f o r p = l , 2  ,..., Q , p # o i e .  

Q 

k l  
&z%(%,, - %,U - (BP - 2,)h 
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< - --E(B, 2 1 - c  - B,)(Q- 2 -  B, - Bo) 
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(31) 

Looking closely at these conditions one realizes that the following two combinations 
of order parameters are important 

2a r 

This implies that the equations for the order parameters for the Qatate Potts model 
with biased patterns can be transformed into two coupled equations for x and y. For 
zero bias we get a further reduction to one single nonlinear equation for y since the 
conditions (31) simplify to (p  = 1,2,. . . , Q, p # CT) 

(33) 

This equation for y is identical to the scaled equation written down in [lo]. 

4. Zero temperature results for the Q = 3 model 

In this section we start by rewriting the fixed-point equations (28)-(30) for Q = 3 and 
n-symmetric states m = mn(l, 1,. . . ,1,0,0, .  . . ,0) where the first n components 
are uNty and the remaining components are zero. The retrieval states are given by 
n = L  

To simplify and speed up the numerical treatment of these equations we make a 
transformation of the integration variables x such that one of the integrals is trivially 
given ty zero or one, and in fact only two-dimensional integrals survive. For T = 0 
they can be further reduced to one-dimensional integrals. This is explained in detail 
in the appendix. 

These equations (&)-(AN) are then solved numerically as a function of the 
bias parameters E .  Let us first remark that it is convenient to rewrite the bias 
E = (B,, B,, . . . , Bg) in a different form, namely 

B = a(bl ,  b,, . . . , bQ) b, > b,... > bQ a 6 [0,1]. (34) 

We call a the bias amplitude and b,, b,, . . . , bQ the bias structure. Due to the fact 
that the model described in section 2 is invariant under permutations of a neuron i, 
(34) is not an additional assumption. 

We have then selected two representative classes of bias parameters, i.e. B, = 
a(2, -1,-1) and B, = a(l,O,-1). The form B, indicates that one state is privileged 
and the other states have equal probability to appear. In fact, for a = 1 the probabilty 
distribution for the pattems is such that the lowest state has probability one. This 
means that there is no freedom left for the neurons. In the other case, B,, all three 
states have different probability. The distribution for the pattems is such that two 
states have mn-zero probability. Hence the neurons can still occupy different states. 
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Before discussing the numerical results we write down the analytic expressions 
for the Gee energy and the entropy. From (16) we find in the limit p + CO after a 
straightforward calculation that 

and that the entropy S is given by 

s = p  -=--a In(l-")+- 
2af ap 2 [ 1-c " 1  

These expressions are formally identical to their analogues in the Potts model 
without bias and the Hopfield model. 

Let us then turn to the explicit results. The numerical anabis of (&)-(A%) 
has been performed using the techniques described in [IS]. In figure 1 the critical 
storage capacity is shown for the positive Mattis state (m > 0) as a function of the 
bias amplitude a. Since in the definition of the order parameter m, the overlap 
due to the non zero correlations between the patterns is subtracted, it is clear that 
a,(. = 1) = 0 for E = E,. This is similar to the Hopfield model [17]. Furthermore 
we recall that a, = 0.415 for a = 0 [l]. Since B, is the most extreme choice of bias 
structure possible [5], all Q = 3 systems have a Mattis storage capacity lying between 
the w e  E,  and the line a, = 0.415. 

2.5 L 

Figure 1. Ihe critical capacity 0 1 ~  as a function of 
the bias amplitude a for the Q = 3 B1 and Bz 
Pot& network at T = 0. 

Fignrc 2 Ihe wedap m for the retrieval state as 
a function of 01 at T = 0 : curve (U) B = Q, 
curve Q1) B1 model for a = 0.4; w e  Qz) 
B1 model for Q = 0.5; curve (b,) B1 model 
for Q = 0.7; cure (c1) B2 model for Q = 0.4; 
curve (cz) B2 model for a = 0.7. l l e  full (dotted) 
tines represent stable (unstable) mlutions. 

The corresponding overlap is given in figure 2 For zero bias the overlap is nearly 
maximal over a long interval in a, indicating almost perfect retrieval properties of the 
system. Increasing the bias amplitude we see that for the E,  system the bifurcation 
diagram retains the same form but the overlap is decreasing; for a = 1 we are left 
with the point m = 4/3 because from [5'j we know that for a = 0 
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For the B, system the overlap decreases more quickly in function of the bias 
amplitude until it reaches m = 0 for a = 1 (see again (37)). We also remark 
that from a = 0.4 onwards until a = 1 the bifurcation diagram shows a second 
turning point. This turning point always appears at a < ac. On these figures also the 
stability of the solutions is indicated. The stability results were obtained in a standard 
way [I91 by studying numerically the eigenvalues of the Hessian matrix formed by the 
second derivatives of the free energy with respect to the order parameters given in 

For the symmetric states we have restricted ourselves to n = 2 and n = 3. In 
figure 3 (full lies) the storage capacity is shown for the B, model as a function of 
a and figure 4 (full lines) does the same for the B, model. Wr the B, model we 
see that there is a pronounced pak and a higher capacity than for the E,  model, 
except for a close to 1. The capacity for the symmetric states is larger than that for 
the Mattis state for a > 0.411 (n  = 2) and a > 0.551 (n = 3). Wr comparison we 
show in figure 3 (dotted curves) the results for the biased Hopfield modeL Here we 
note the presence of the second peak around a = 0.7 for the n = 3 symmetric state 
that is not explicitly shown in [17]. Also here the capacity for the symmetric states is 
larger than that for the retrieval state for values of the bias a > 0.394 (n = 2) and 
a > 0.552 (n = 3). Fbr the B, model the storage capacity for the n = 2,3 states is 
roughly a factor of 3 lower than that for the n = 1 retrieval state. 

(15). 

.03 

Pigum 3. me storage capacity 01 as a hndion of 
a for the n = 2 and n = 3 symmetric states in the 
Q = 3 Bi model  full^ Nrves) and the Hopfield 
model (dashed cuzves) a1 T = 0. 

Figure 4 As figure 3, but for the Q = 3 Bz model 
(full Nmes). The dotted N N ~ S  represent the 
turning point at the smallest capacity (see figure 5). 

The dotted curves in figure 4 represent, for the B,-network, the turning point 
at the smallest capacity. This can be clearly understood from figure 5 where, as an 
illustration, the overlap is shown for the n = 2 symmetric state for both the E ,  and 
B, system. Indeed, we see the appearance of two turning points, especially for the 
B, system (figure 5(b)), for certain bias regions. We note that in contrast with the 
B, system the turning point with the highest overlap occurs at a loading a < a, for 
a < 0.83. In the case of the n = 3 symmetric state we even find the possibility of 
three turning points. 

'lb complete the discussion of the T = 0 behaviour of the network we mention 
two further results. Firstly, we know that for the biased Hopfield system the Mattis 
states are no longer the ground states when the bias parameter a exceeds the value 
a = (a- 1) [lq. For the Q = 3 Potts systems with bias, results of this type are 
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0.0 c 
. io .Ol . .d2 , .d3 .04 

a 

Figure 5. The overlap mz for the n = 2 symmetric states .ss a function of P for (a) 
the Q = 3 Bt model and (b) the Bz model at T = 0 for different values of a. ?he 
full (dotted) lines represent stable (unstable) solutions 

strongly dependent on the specific bias parameters. We have already seen in [5l that 
in the case of Q = 0 the Mattis state and the first symmetric state for the B, system 
cross when the bias amplitude is bigger than (:Jm+ 3 a -  5) while for the 
B2 system the Mattis state remains the lowest in energy for all values of the bias 
amplitude. This behaviour persists if a # 0. 

Secondly, to have an idea about the internal consistency of the replica-symmetric 
theory we have calculated the entropy at T = 0 using expression (36). For the 
ferromagnetic phase we h o w  already that the Hopfield model without bias leads to 
an entropy at the critical capacity equal to Sac = -1.4 x Fbr the Q = 3 Potts 
model without bias we find -3.3 x For the B, system we find for a = 0.4 the 
value -1.5 x IOw2, for a = 0.7 the value -8.8 x For the B, system the entropy 
is -5.9 x for a = 0.7. All this suggests that replica 
symmetry breaking & still weak in the retrieval states for the Q = 3 Potts model with 
bias. 

for a = 0.4 and -4.6 x 

5. Results at finite temperature 

An analysis of these models at a finite temperature is much more involved. In the 
following we restrict ourselves to the positive Mattis states which are most important 
to determine the retrieval quality of the network In particular, we do not discuss 
the transition from the disordered paramagnetic phase to the spin-glass phase. For 
results about these thermodynamic properties of the model we refer to [U]. 

The k e d  point equations (19 j(23) now contain two-dimensional integrals as 
explained at the beginning of section 4. These integrals are calculated using the 
specific numerical techniques described in [ZO, 211. Employing a bifurcation analysis 
we amve at the phase diagram depicted in figures 6 and 7 for the B, and Bz system, 
respectively. When crossing the line T, from above Mattis retrieval states show 
up as local minima of the free energy. At this point the overlap with the built-in 
patterns jumps from zero to a finite macroscopic value. So the system functions as 
an associative memory and the critical storage capacity for a given temperature can 
be read off through the line T,. When T is lowered further, the retrieval states 
become global minima of the free energy [15]. This happens along the line T,. The 
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2.5 1- 

c 

1.0 

0.5 

o=o ' 

0.0 
.o .1 .2 .3 .4 .5 

plgurr 6 A (T, a) phase diagram for merent 
values of a for the Q = 3 8 1  model. The full 
lines denotes TM, the dotted lines denotes T,. 

a 

prsM 7. As €igu~ 6, but for the Q = 3 Bz model. 

transition at T, is a first-order wnsition. We note that for the B, model, the line To 
for a = 0.7 is not visible on the scale of figure 6. 

In contrast with the Hopfield model the critical lines T, and T, are different 
for a = 0 due to the fact that even for a finite number of patterns the Potts model 
has a discontinuous transition at T, 151. Furthermore, in all cases shown here we 
find weak reentrant spin-glass behaviour, analogous to what has been Seen [22] in the 
Hopfield model. 

As expected, there is not much difference in shape for the critical lines when 
introducing a non-zero bias. The value of the critical capacity for the E ,  system 
decreases more quickly as a function of the bias amplitude a than that for the 
B, system. For zero bias we confirm the known results a, = 0.415 [I] and 
T'(a = 0) = 2.185 [2, IO], T,(a = 0) = 2.165 [5]. 

It is interesting to how the stability region of the retrieval states as a function 
of T and a over the whole range of these parameters. These regions are depicted 
in figures 8 and 9 for B, and B,, respectively, at two values of a and compared 
with their a = 0 analogues. For the B, system (figure 8),  the following remarks 
can be made. The disconnected stability region in the a = 0 case in the interval 
a E [0.6,1] disappears for a # 0. For example, for a = ac(T = 0,a = 0)/10 
the 'knee' around a = 0.55 is still reminiscent for this disconnectedness while for 
a = a,(T = 0, a = 0)/2 the behaviour is smooth. For the B, system (figure 9), no 
such disconnectedness appears in the stability region. Also, for a = 1 the temperature 
for 0 < a < 6.44 x IO-, is non-zero in contrast with the B, system due to the 
fact mentioned in section 4 that for the B, system all three states have different 
probability. For completeness we present similar results for the Hopfield model in 
figure 10. The Q = 3 E ,  system shows some resemblance with the Hopfield model. 

6. Concluding remarks 

In this paper we have completed the study of the Potts model with bias, started in 
[5] for low loading a = 0, by treating the case of finite loading a # 0. Fmed-point 
equations at finite temperature are derived for general Q and in the limit of zero 
temperature it is shown how they reduce to two coupled equations for appropiate 
combinations of the order parameters. The Q = 3 system has been solved explicitly at 
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2.0 2.5m,,, ,::;:R 
1.5 .=.$0)/2 

i- a=aa(0)/2 c 
1.0 

I .. 1.0 

0.5 

0.0 ..... .... 
0.5 

-0.0 
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

0 

F b r c  S The temperature TA, as a function of 
a for the Q = 3 B1 model for different values 
of 01. The chain Nave indicates the border of the 
stability region. 

Flgt~re 9. As @ure 8, but for the Q = 3 Bz model. 

1.2 1 t 

+ 0.6 

0.4 

0.2 

0.0 

. 
O!O 0.2 0.4 0.6 0.8 . 1.0 

0 Flgure 10. As 6gu1e 8, but for the Hopfleld model. 

finite loading a for two representative classes of bias parameters B, = a(2, -1, -1) 
and B, = a(l,O, -1). In particular, the positive Mattis retrieval state and the lowest 
symmetric states have been discussed. At zero temperature, we find that the Mattis 
storage capacity is higher for the B, system than for the B, system over the whole 
a interval while the storage capacity for the n = 2 and n = 3 symmetric states has 
the inverse behaviour. The Mattis overlap for B, decreases more quickly than the 
overlap for B, as a function of a. 

At non-zero temperatures, a, for the B, system also decreases more quickly. For 
CY = 0 a disconnected stability region for the Mattis state exists. In all its properties 
the B, model shows some resemblance with the Hopfield model. 
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Appendix 

The reformulation of the zero temperature fixed-point equations (28)-(30) for the 
Q = 3 n-symmetric states is based upon the following transformation 

y = T +  

Tk,l = k =  1,2,3 

where the Us involve Potts operators and the N2 and N3 are normalisation constants 
respectively given by 

u.b,p = (-l)p(uk,p+Z - uk,p+l  - cBp+2 - B p + l ) )  (As) 

( 4  

with 
be rewritten as 

a cyclic parameter taking the values 1 to 3. The fixe lint equations can then 



" 

Wr zero bias, these equations are equivalent to that derived in [l]. 
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